Компактность - Definition. Was ist Компактность
Diclib.com
Wörterbuch ChatGPT
Geben Sie ein Wort oder eine Phrase in einer beliebigen Sprache ein 👆
Sprache:

Übersetzung und Analyse von Wörtern durch künstliche Intelligenz ChatGPT

Auf dieser Seite erhalten Sie eine detaillierte Analyse eines Wortes oder einer Phrase mithilfe der besten heute verfügbaren Technologie der künstlichen Intelligenz:

  • wie das Wort verwendet wird
  • Häufigkeit der Nutzung
  • es wird häufiger in mündlicher oder schriftlicher Rede verwendet
  • Wortübersetzungsoptionen
  • Anwendungsbeispiele (mehrere Phrasen mit Übersetzung)
  • Etymologie

Was (wer) ist Компактность - definition

ТОПОЛОГИЧЕСКОЕ ПРОСТРАНСТВО, В КОТОРОМ ИЗ КАЖДОГО ОТКРЫТОГО ПОКРЫТИЯ МОЖНО ВЫБРАТЬ КОНЕЧНОЕ ПОДПОКРЫТИЕ
Относительно компактное множество; Компактное множество; Принцип Бореля-Лебега; Бикомпактное пространство; Компактность; Предкомпактное пространство; Предкомпактное множество; Компакт; Относительная компактность; Ограниченно компактное пространство; Предкомпакт; Компактное метрическое пространство; Компактное топологическое пространство; Счетно-компактное пространство; Компакт (топология); Бикомпакт; Секвенциально компактное пространство; Секвенциальное компактное пространство; Бикомпактность; Компактифицированное пространство

Компактность         
(математическое)

важное свойство множеств; множество называется компактным, если каждая бесконечная последовательность его элементов (точек) имеет хотя бы одну предельную точку (См. Предельная точка). От К. по отношению к объемлющему пространству отличают К. в себе: множество (лежащее в определенном топологическом пространстве или являющееся само топологическим пространством) компактно в себе, если каждая бесконечная последовательность его элементов имеет хотя бы одну предельную точку, принадлежащую тому же множеству.

В математическом анализе большое значение имеет принцип Вейерштрасса, утверждающий, что каждое ограниченное множество действительных чисел - компактно. Компактные множества функций играют фундаментальную роль в теории функций и функциональном анализе. Для того чтобы множество Е непрерывных (например, на сегменте [0,1] числовой прямой) функций было компактно (в пространстве С всех непрерывных на [0,1] функций), необходимо и достаточно, чтобы функции множества Е были ограничены в своей совокупности (одной и той же постоянной) и равностепенно непрерывны (см. Равностепенная непрерывность).

Компактное Метрическое пространство называется компактом. Среди множеств, лежащих в евклидовых пространствах E n произвольного числа измерений, компактны в E n все ограниченные множества и только они; компактами (то есть компактными в себе множествами) среди них будут лишь замкнутые (и ограниченные) множества. В гильбертовом пространстве (См. Гильбертово пространство) ограниченность недостаточна для компактности: сфера в гильбертовом пространстве некомпактна, хотя образует замкнутое и ограниченное множество. Компактом является так называемый фундаментальный параллелепипед гильбертова пространства, то есть множество всех точек этого пространства, координаты которых удовлетворяют условиям 0≤ xn1/2n. Все компакты (и среди всех топологических пространств только компакты) гомеоморфны (см. Гомеоморфизм) замкнутым множествам фундаментального параллелепипеда гильбертова пространства (теорема Урысона). Компакты конечной размерности (См. Размерность) и только они гомеоморфны замкнутым ограниченным множествам евклидовых пространств.

Для метрических пространств, а также для топологических пространств со счётной базой свойство К. (в себе) эквивалентно свойству бикомпактности.

Лит.: Александров П. С., Введение в общую теорию множеств и функций, М. -Л., 1948; Хаусдорф Ф., Теория множеств, пер. с нем., М. - Л., 1937.

компактность         
КОМП'АКТНОСТЬ, компактности, мн. нет, ·жен. (·книж. ). ·отвлеч. сущ. к компактный
. Компактность какой-нибудь массы.
компактность         
ж.
Отвлеч. сущ. по знач. прил.: компактный.

Wikipedia

Компактное пространство

Компа́ктное простра́нство — определённый тип топологических пространств, обобщающий свойства ограниченности и замкнутости в евклидовых пространствах на произвольные топологические пространства.

В общей топологии компактные пространства по своим свойствам напоминают конечные множества в теории множеств.

Beispiele aus Textkorpus für Компактность
1. Что и означает соответствующую компактность проживания.
2. Главный козырь столицы Баварии - компактность олимпийских объектов.
3. Увы, компактность – единственное преимущество этого подвида.
4. Дедков, немалое внимание обращалось на компактность построек.
5. Это компактность, удобство, безопасность и просвещение.
Was ist Комп<font color="red">а</font>ктность - Definition